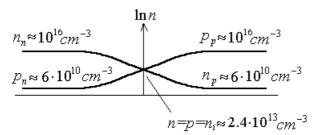

Электронно-дырочный переход

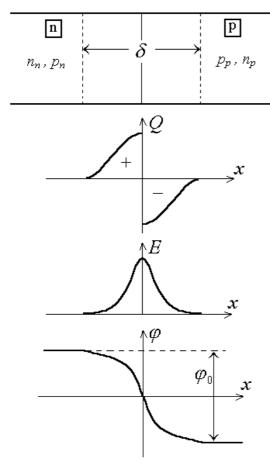
Две области с разным типом легирования - n-область (концентрация доноров N_d) и p-область (концентрация акцепторов N_a)


Концентрации основных носителей электронов в n-области $n_n = N_d$, дырок в p-области $p_p = N_a$

Пусть $N_d = N_a = 10^{16} cm^{-3}$ - резкий симметричный p-n-переход

Полагая
$$n_i$$
=2.4·10¹³ cm^{-3} (Ge при 300K) имеем $n_p = p_n = \frac{n_i^2}{p_p} = \frac{n_i^2}{n_n} \approx 6.2 \cdot 10^{10} \, cm^{-3}$

 \Rightarrow концентрация электронов меняется слева направо от $2.4 \cdot 10^{13} cm^{-3}$ до $6.2 \cdot 10^{10} cm^{-3}$, дырок - аналогично, но справа налево; из-за теплового движения это плавное изменение



На границе есть слой с $n=p=n_i$ - обедненный носителями до собственного полупроводника (т.н. обедненный слой)

Из-за диффузии - поступление электронов из n-области в p-область, дырок из p-области в n-области - тепловое движение носителей создает диффузионный ток (направленный из p-области в n-область)

- ⇒ образование в р-области избыточного отрицательного заряда ("облака" электронов) и так же избыточного отрицательного заряда "вмороженных" ионов акцепторов, в п-области избыточного положительного заряда "вмороженных" ионов доноров и избыточного положительного заряда неосновных носителей ("облака" дырок)
- ⇒ в близи р-п-перехода возникает т.н. объемный заряд
- ⇒ возникает электрическое поле, возвращающее электроны в n-область и дырки в p-область электрическое поле в p-n-переходе создает т.н. ток проводимости (направленный из n-области в p-область), в состоянии термодинамического равновесия точно компенсирующий ток диффузии

Из-за наличия поля между n-областью и p-областью возникает разность потенциалов - т.н. скачек потенциала φ_0 в p-n-переходе - потенциальный барьер, препятствующий диффузии

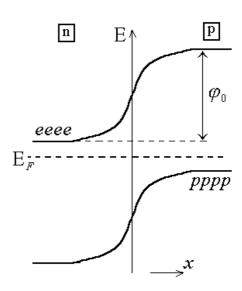
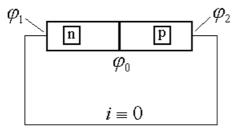
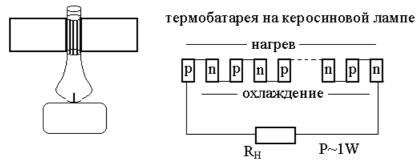


диаграмма изгиба плоских зон

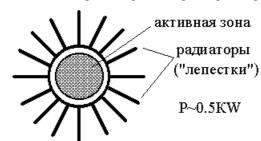

 $arphi_0$ определяется из одинаковости уровня Ферми (химического потенциала) для всей системы и равен $q_0 = \frac{kT}{q_e} \ln \frac{p_p \cdot n_n}{n_i^2}$

Для рассмотренной модели (Ge, N_d = N_a = $10^{16} cm^{-3}$) при 300К $\frac{kT}{q_a} = \varphi_T \approx 0.025 V$,

$$n_i = 2.4 \cdot 10^{13} cm^{-3} \text{ M} \quad \varphi_0 \approx 25 mV \cdot \ln \frac{10^{16} \cdot 10^{16}}{(2.4 \cdot 10^{13})^2} \approx 25 mV \cdot 12 = 300 mV$$


Для аналогичного перехода из Si $n_i \approx 1.4 \cdot 10^{10} \text{ cm}^{-3} \Rightarrow \varphi_0 \approx 25 \text{ mV} \cdot 27 \approx 675 \text{ mV}$

Но почему не возможен вечный двигатель ?



Тем не мене : если нагреть (или охладить!) только переход - в цепи будет ток, т.к. - $(\varphi_l + \varphi_2) = \varphi_0(T_1) \neq \varphi_0(T_2)$ - простейший термоэлемент - аналог термопары, но с ЭДС в \sim 10 раз большей

Пример: термоэлектрические генераторы

аналогично : термобатарея с ядерным реактором ("Ромашка")

Ширина области пространственного заряда ("ширина" p-n-перехода) δ_0 - из уравнений электростатики $\varphi=\int E\cdot dx$, $E=\frac{1}{\mathcal{E}\mathcal{E}_{0}}\int \rho\cdot dx$ где $\rho=q_{e}n$ - объемная плотность заряда;

для резкого p-n-перехода
$$\overline{ \delta_0 = \sqrt{\frac{2\varepsilon\varepsilon_0 \varphi_0}{q_e} \bigg(\frac{1}{n_n} + \frac{1}{p_p}\bigg) } }$$

Для нашего случая (Ge $n_n = p_p = N_d = N_a = 10^{16} cm^{-3}$, $\varphi_0 \approx 300 mV$, $\varepsilon_{\rm Ge} = 16$) $\delta_{0\rm Ge} \approx 3.2 \mu m$

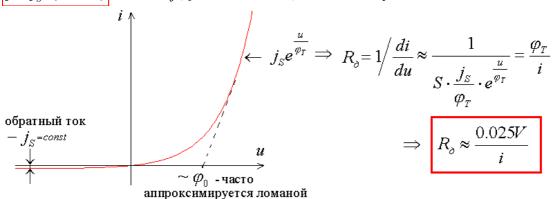
Для аналогичного перехода из Si меняются $\varphi_0 \approx 675 mV$, $\varepsilon_{Si} = 12$ и $\delta_{0Si} \approx 4.3 \mu m$

VA-характеристика p-n-перехода

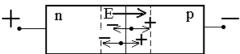
- а) в отсутствии внешнего смещения система в равновесии ток диффузии уравновешивается током проводимости; в переходе существует потенциальный барьер, а в центре перехода область с повышенным сопротивлением
- б) при приложении напряжения соотношение ток диффузии / ток проводимости изменяется \Rightarrow во внешней цепи появляется ток - система неравновесная; два варианта:
- 1. приложено напряжение одного знака с φ_0 потенциальный барьер растет \Rightarrow растет "выметающее" поле в переходе ⇒ ток диффузии падает, ток проводимости выходит на константу

$$+ \underbrace{\begin{array}{c|c} n & \vdots & p \\ \hline \\ l_n & \vdots \\ \hline \end{array}}_{p}$$

(определяется диффузией неосновных носителей из


нейтральных объемов полупроводника и в идеале не зависит от "ширины" перехода и смещения):

$$J_S = q_e \left(rac{l_p}{ au_p} \, p_n + rac{l_n}{ au_n} \, n_p
ight)$$
 - в переход за время au поступает заряд из слоя l


 j_S - плотность тока насыщения, τ_p и l_p - время жизни и диффузионная длина дырок в n-слое, τ_n и l_n - время жизни и диффузионная длина электронов в p-слое

2. при прямом смещении (уменьшающем потенциальный барьер) ток проводимости практически не меняется, а диффузионный ток растет экспоненциально :

$$j = j_S \cdot (e^{\frac{u}{\varphi_T}} - 1)$$
 $i = S \cdot j$, j - плотность тока, S - площадь перехода

На самом деле : при больших прямых токах и смещениях растет вклад омического сопротивления полупроводника и экспоненциальность нарушается; при обратном смещении обратный ток > j_S и зависит от u из-за термогенерации в обедненной зоне (прежде всего на ловушках)

Отличие p-n-перехода от вакуумного диода:

- 1. VA-характеристика проходит через 0 нет внутреннего источника энергии
- 2. ток меняет знак (обратный ток $\neq 0$)

Обозначение на схеме цепи:

Инжекция и накопление неосновных носителей

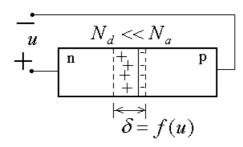
При прямом токе преобладает диффузионная компонента - т.е. через переход навстречу идут потоки основных носителей в области, где они оказываются неосновными - это процесс инжекции

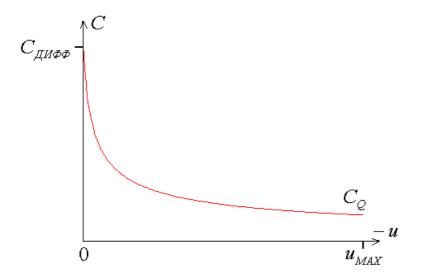
⇒ вблизи перехода растет концентрация неосновных носителей - такое накопление заряда можно трактовать как наличие у p-n-перехода диффузионной емкости :

$$C_{DH\Phi\Phi} = \frac{\Delta Q}{\Delta u} = \frac{S}{\varphi_T} (j_p \tau_p + j_n \tau_n)$$

где j_p - диффузионный ток дырок, j_n - электронов, $j_p + j_n = j + j_S$

для несимметричного перехода : например, $N_a \gg N_d \Rightarrow j_p \gg j_n$ и $C_{{\it ДИФФ}} \approx \frac{S}{\varphi_{\scriptscriptstyle T}} (j+j_{\scriptscriptstyle S}) \tau_{\scriptscriptstyle p}$ - при

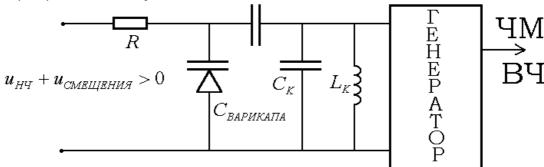

условии $j=-j_S$ (обратный ток насыщен при достаточном обратном смещении) диффузионная емкость =0


Диффузионная емкость связана с протеканием тока \Rightarrow емкость с большими потерями ("с низкой добротностью")

Но : при обратном смещении существует емкость запирающего слоя - обусловлена зарядом "вмороженных" ионов примеси - это т.н. зарядовая емкость

Для резкого асимметричного p-n-перехода (например, $N_d << N_a$):

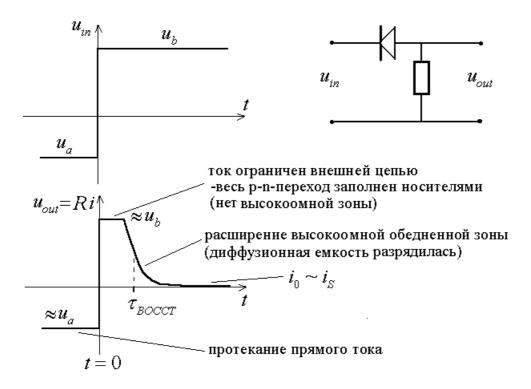
$$C_{Q} = \frac{\varepsilon \varepsilon_{0} S}{\delta} \approx C_{0} \sqrt{\frac{\varphi_{0}}{\varphi_{0} + |u|}} \approx C_{0} \sqrt{\frac{\varphi_{0}}{|u|}} \qquad C_{0} = \frac{\varepsilon \varepsilon_{0} S}{\delta_{0}}$$


Чаще - сложное распределение примеси $N_a(x)$, $N_d(x)$ - нерезкий (плавный) p-n-переход \Rightarrow емкость как f(u) и аппроксимируют как $C \approx \frac{A}{\left(\left|u\right| + B\right)^{\alpha}}$, обычно α <1

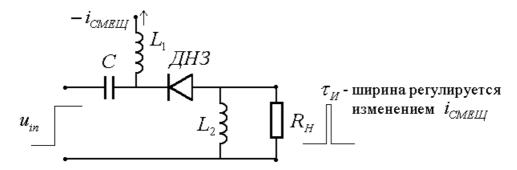
Применение:

варикапы (емкости, управляемые напряжением) - перестройка контуров, варакторы (нелинейные емкости) - умножение частоты

Например: частотная модуляция


Характерные емкости варикапов - в пределах

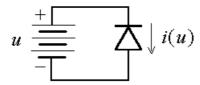
от
$$0.5 - 5 pF$$
 до $100 - 1000 pF$ ($u_{\text{СМЕЩ}}$ от \sim -0 до -30V)



Диоды с накоплением заряда (ДНЗ)

Обычно $C_{{\it ДИ}\Phi\Phi}>> C_{\it Q} \Rightarrow$ при переключении смещения с прямого на обратное снижение тока до уровня $\sim j_{\it S}$ происходит с задержкой из-за рассасывания объемного заряда неосновных носителей

Применение ДНЗ - формирование коротких импульсов:



Обычно $au_{\mathit{UMII}} > au_{\mathit{BOCCT}} \sim 1 - 100 \mathit{ns}$; для специальных диодов $au_{\mathit{UMII}} < 100 \mathit{ps}$

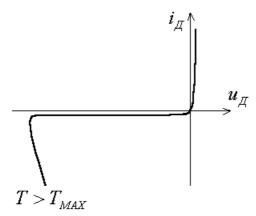
При специальной структуре p-n-перехода (особом профиле распределения примеси) - формирование почти прямоугольных импульсов

Но чаще всего : накопление заряда - очень вредный эффект - ограничивает предельные рабочие частоты, приводит к потерям мощности

Пробой р-п-перехода

Основные типы пробоя:

- 1. тепловой пробой
- 2. поверхностный пробой


- 3. лавинный пробой
- 4. зенеровский (туннельный) пробой

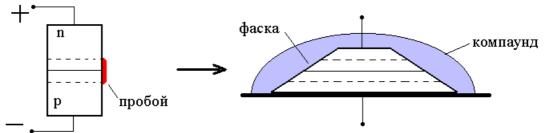
.....

1. Тепловой пробой

При протекании обратного тока в полупроводниковом диоде в виде тепла выделяется мощность $i\,u$, приводящая к разогреву диода.

Однако увеличение температуры перехода ведет к увеличению обратного тока и к усилению разогрева - и при недостаточном теплоотводе на статической VA-характеристике может появиться область отрицательного сопротивления и развиться тепловой пробой.

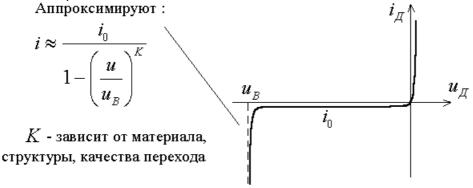
Реально - время развития теплового пробоя велико - 0.01-100sec


Тепловой пробой ограничивает рабочие температуры 70-80°С (Ge) 100-130°С (Si)

Если развивающийся ток пробоя не достаточно ограничен внешней цепью, то происходит тепловое разрушение диода (например, плавление полупроводника).

2. поверхностный пробой

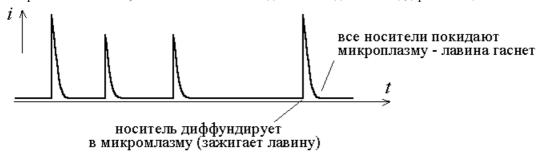
р-п-переход - очень тонкий слой (0.1- 100μ m), и при существенным приложенном обратном напряжении (10-1000V) возможно развитие электрического разряда (искры, дуги) по поверхности полупроводника (на границе газ-полупроводник); пробой обычно стимулируется дефектами и загрязнениями на поверхности



Предотвращение : спецобработка поверхностей (полировка, травление, пассивация), нанесение покрытия (компаунды), снятие фасок, специальные профили распределения примесей

3. лавинный пробой

В сильных полях ($\sim 10^4 - 10^6 {
m V/cm}$) носитель между двумя соударениями с решеткой набирает энергию, достаточную для ионизации атома в узле - т.е. при соударениях он генерирует новые электронно-дырочные пары


Новые носители далее так же генерируют пары - возникает лавинное размножение носителей - а на VA-характеристике возникает быстрое (не ограниченное) возрастание тока - происходит лавинный пробой :

Особенность лавинного пробоя - рост $|u_B|$ с ростом температуры перехода (положительный ТКН) - тепловое движение "сбивает" разгон носителей

Другая особенность - микроплазмы - развитие пробоя в локальных (микроскопических) областях концентрации поля вблизи дефектов

 \Rightarrow при "подходе" к пробою - очень сильный шум обратного тока - усиление в "зажженных" микроплазмах велико, но число носителей не достаточно для самоподдерживающейся лавины :

- диффузия носителей - случайный процесс \Rightarrow генерация истинно случайного шума

4. туннельный (зенеровский) пробой

В очень тонких переходах ($\delta\sim10\text{-}100\text{nm}$) - число соударений носителя с решеткой мало \Rightarrow лавина не возникает даже в сильных полях

Но : в очень сильных полях - $\sim 10^5 - 10^6 \text{V/cm}$ - ширина потенциального барьера для валентного электрона уменьшается и появляется возможность "туннелирования" под барьером с образованием электронно-дырочной пары - развивается зенеровский (туннельный) пробой

Особенность туннельного пробоя - снижение пробивного напряжения с ростом температуры (отрицательный ТКН)

Для Si диодов пробивные напряжения соответствуют:

<4V - туннельному пробою

>8V - лавинному пробою

4-8V - конкуренции процессов

Применение зенеровских и лавинных диодов (полупроводниковых стабилитронов)